Please login to the form below

Not currently logged in

Pharma industry consensus: fix data strategy before pushing artificial intelligence and machine learning applications

by Marc Valdiviezo


‘Data is the new oil’, but only analytics-ready data is a real business asset and everyone knows this. However, absence of a cohesive strategy to incorporate cloud platform and data lakes, integrating and consolidating data warehouses, data hubs and databases as a single source of data, can easily send organisations into a tailspin. A huge volume of data is currently being generated from transaction applications, social media and operational devices and processes. Heterogeneous data sources and diversity of data management technology can further make it a management nightmare.

Top executives managing global digital and marketing operations from the pharma industry agree that advanced data quality and analytics governance on data practices is the stepping stone for current and futuristic use cases of artificial intelligence (AI) and machine learning (ML) applications.

According to John McCarthy, Principal Consultant, DT Associates, and former VP Global Digital, AstraZeneca, “as medicines become more expensive, clinical utilisation will be more and more dependent on diagnostic testing or even generic testing. We are going to have to be better at data capture and utilisation that allows ML or AI to engage with the right patients and be more efficient in the way you are engaging broad patient populations. Finding those patients and bringing them to the right doctors will be the new trend in terms of how we utilise data through ML or AI. The old way of working will just not help.”

Thomas Thestrup-Terp, Vice President, Commercial Operations, Novo Nordisk, agrees unequivocally that organisations lack the good clean commercial data they need before starting to create any form of commercial AI. “I see these technologies playing out actively in the next five years. We need to do our homework on how do we capture, store and derive insights from data before we invest too much in machine learning or AI,” said Thomas.

Raakhi K Sippy, Global Head of Marketing Operations & Third-Party Partnerships, GSK, also stresses the importance of AI for marketing. “We started to harness AI really well on the regulatory and evidence generation side, but where we have not leveraged AI, which is a trend that is picking up pace, is in marketing. Now you've got AI to drive the actions of our content. We need to absolutely adapt to drive efficiencies around marketing operations and automation to help with speed to market of our content. We are already beginning to run pilots on the learnings from clinical evidence, regulatory, etc. and their application to commercial actions,” said Raakhi.

Jeff French, Vice President and Chief Digital Officer, ViiV Healthcare, puts forth compliance and understanding as more fundamental issues for AI and ML applications. “A lot of people go after ML and AI and think that they can do it tomorrow. They forget that ML is a learning exercise that takes time. It requires patience to train the machine. The second part is compliance – how do you get it to make the right calls? The decisions that it makes might become a compliance issue from pharma's perspective. Health chatbot companies can help facilitate getting somebody to care, but they cannot be the caregivers themselves,” said Jeff.

According to Marc Schwartz, Global Multi-Channel Marketing Lead, Sanofi: “Everyone is talking about AI and ML, but generally there is not enough concreteness or specificity yet. The good news is that pilots are happening in organisations and competencies are being embedded. There is no question that AI and ML will play a critical role and will impact all pharma functions in the long term. It will play a critical role in meeting the needs of our customers. This will transform all healthcare. It’s just not there today.”

Organisations should exploit AI/ML for data augmentation, data catalogue, metadata management, master data management, data quality, profiling, cleansing, linking and identifying to make data management self-driven. Organisations need to utilise smart and active metadata, discovery and collaboration platforms to dynamically connect, optimise and automate data integration processes to reduce time to data delivery and most importantly, actionable insights.

According to Uwe Dalichow, Head of Global Marketing Operations, Bayer: “Data analytics is the springboard for meaningful applications of next-gen AI and ML technology. I think if you do your homework in getting that kind of data in order, and then make use of information that we often already have, this can make a huge difference in reaching out to customers. But it all needs to be put into a consumable and adjustable format, and connected from different sources. Then it is possible to programme IT systems on how to advise in order to improve our business and better meet customer needs. Sales reps can get better equipped to hone in their skills on customer engagement strategy.”

Source: PharmaFuture Digital Council. Stay up to date on industry white papers and events at

Note: Listen to the PharmaFuture Digital Council Members at the 2019 Indegene Digital Summit, where senior leaders from Google, Microsoft, and pharma Industry will discuss how life sciences organisations can embrace the fundamental shift from an era of blockbuster drugs to an era of blockbuster customer experience. Preview agenda and register here.

Marc Valdiviezo, Vice President, Strategy & Applied Digital Transformation, Indegene and a member of the PharmaFuture Digital Council

In association with


18th September 2019

From: Marketing



Subscribe to our email news alerts


Add my company
Empowering Strategic Performance Ltd

OUR GOAL: To help clients Metamorph™ Science into Action that changes healthcare to improve the lives of patients. Empowering Strategic...

Latest intelligence

Archetypes: Rethinking go-to-market expectations to drive commercial success
In this white paper, our consultants analyze trends spanning global policy developments, rising inflation, and increasingly complex customer journeys, and reveal a new data-driven approach to archetyping that crystalizes the...
Tuberculosis – why it remains a major global public health challenge
Innovative collaboration is required to address the major public health challenges around TB and expedite drug development...
Whitepaper: Closing the gap with compelling healthcare communications
Want to learn how to close the distance between a person’s current health and their healthiest possible self?...